
UDC 536, 25 

CLASSICAL SOLUTIONS OF THE SECOND BOUNDARY VALUE PROBLEM 

FOP. E~JATION$ OF UNSTEADY HtIg CONVSCTION 

PMM VoL37, b~l, 1973. ppo184°190 
P. $. C HERNIAKOV 

(Khar'kov) 
(Received June 14, 1971) 

Substantiation is given for the use of the method of consecutive approximations 
to determine the velocity of the temperature disu~butions when unsteady free 
convection takes place in a closed convex region, at the surface of which the 
thermal flux density is specified. The domains of applicability 'of this method 
and the method of small parameter, coincide. The convergence of the approxi- 
mate  solution to the exact solution is proved and an estimate of the ezror is 
given. The local existence theca~m and the uniqueness theorem are proved. 

1 .  Let a convex region Q be completely filled with an incompressible viscous fluid 
of constant initial temperature bo. Let for tl > 0 a heat flux distribution ql (xl,, tx) be 
specified at the surface ,Y of the vessel  We derive equations describing unsteady free 
convection in a bounded region with the boundary conditions of the second kind. 

In the Bursinesq [ I ]  approximation the equation of state assumes the form 

p (b) u p (<b)) [ 1 - -  ~ (<b>) ( b - -  <b>)] (1.t) 

where p is the density, ~ the thermal expansion coefficient, b the temperature and 
<b> the volume-averaged temperature of the fluid. It was shown experimentally in [2] 

that [<b>--b~I,~lb-- <b>l 

and from the formula for ~(b) in the Btmir~sq approximation It follows that [~ (<b>) -- 

(b~) IP (<b>)-- p (b~)]= p(bl)[~ (bl) l<b>-- b~l .~ ~ (<b>)p (b:)Ib-- <b> [ ~ P  (b~) 

where bl denotes the average temperature of the fluid. Corumquently p (<b>) = p (b~)= 
Po and the equation of state amumes the form 

p (b} ffi p0[t-- ~o (b - -  <b>)] (~o = ~ (b~)) (1.2) 

Transforming the continuity and heat ~ a m ~ r  equations of Navier-,Sr~tces in the usual 
manner employed in deriving the equations of steady ~ convection [1] and reducing 
them to the ~iimensionless form, we obtain the following system of equations as well as 
the initial and boundary condltiom on S :  

0V 
Ot + (V.grad) V = - -  grad p - - G a  ¢ (T - -  <T>) i -~ ~AV 

div V - -  0, OTIOt ~ (V. grad T) ~ AT (t.3) 

Vl+.o ~ 0 ,  Vlx, = 0 ,  Tl+-o •'0' On' x, ~q(x+,O (1.4) 
Here 
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S o l u t i o n s  o f  t h e  s e c o n d  b o u n d a r y  v a l u e  p r o b l e m  f o r  e q u a t i o n s  o f  c o n v e c t i o n  ~ 7 ~  

x~ aoh (Px -- P.)/~ 
x-----~, t---- IX ' P - -  Poao" 

T ~ -  (b - -  b.) ~o (<b> - -  bo) 
qol ' <T> ---- qol 

G = g~qol~ q~ 

x~Q, xs~S , S~==S × [0, q, 

Vl 
, V ~  

no 

Qt. ~ [~,4] 

qo == m a x .  qx 
(x, t)e~ t 

Q ¢ds =I 
where l is the characterist ic linear dimension, o 0 is the dimensionless volume, V is 
the veloci ty,  P~ and P0 ate the pressure and hydrostatic ]:x.essure, ~0 is the thermal 
conductivity,  so is the thermal  difftmivi~ and v 0 is the k inemat ic  viscosity. The above 
notation relates to the fluid under investigation. 

The validity of  Eqs. (1 .3)  is indirectly confirmed by the good agreement  of  the approx- 
imate  solution of  the init ial  boundary value problem (1.3),  (1 .4)  with the experimental  
data obtained for a number of  vessels in [ 3 -  5].  

We shall cal l  the functions V, p and T the classical solution of the problem (1 .3 ) ,  
(1.4) ixovided that  these functions as well as the derivatives ofPwith respectwthespeti- 
al coordinams am continuom over the set of variables x and t in ~te* = o* )< [0, to], 
have derivatives with respect w the set of variables x and t in fifo' = Q' × [t~, to], 
which ate all  continuous, appear in the system of equations (1 .3)  and satisfy the condi-  
tions (1.4) where Q' ~ o and o* is the cl~ure of region o. 

g. T h • or • m 1. If G is a convex region, S is a twice continuotmly different° 
iable surface, q tx., t) ~ H i,̀ /, (S~.) [6] and q (x., 0) = 0, then a classical solution of the 

problem (1.3), (1.4) exists in fit, and can be obtaineo by the method of succemive appro- 
ximations, where Sto = S × [0, to]. 

Proof. Consider the sequences of functions V~, T~ and Pu satisfTing the following 
systems of  equations 

OTo 
OV:: V0 •ffi 0, po ffi= 0, Ot ,=, ATo 

~)t - -  z A V  = - -  grad p~ - -  (V~_l.grad) Vk_ x - -  G~S (T k - -  <T>) i, 

OT~ 0 
at - AT~ - -  ~ (Vj k_lTk_x) (4 > ~) 

with the initial and boundary conditions 

aT~ 1 r. .  I,.ffio = u, On x, = q (x,,  t), V~ I,=o = 0, V A. Ix s = 0, 

Let us obtain the estimates fo~ the functions V k and T~. We denote 

U k(t)= max max.] Vi, uJ 
(i=,=l, 2. 3) X~_~ 

Wklt) f m a x L l ~ [ ,  ~ ' 1 ~  'IT~'I 
X~t"/* 

Using the resu1~ of  ['7] we est imate the functions Uk (t) 
t t 

U~.I <~ C,Gz2 Wk(~) . 1 , 
o ( t - - T )  ~ : 

divV~ •=O (2.1) 

(k~ O) (2.2) 

(2.3) 

eCo(I-'OI dT-~-CIG~'I i <T (-¢)> I ~  ~ .~ eCe(t-X)l dT_ ~ 
0 
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t 

C" I U k ' [ ( t  .r)y o ' = ~ (2 .4 )  

Here ~ is an arbitrarily small positive number, C o, C~ and C 2 are constants depending 
only on the region ~2. 

Using the a p r i o r i  est imate given in [6],we estimate rk+~ 

3 

'~--X (x. t)eSOt" I ~ I 

Here o t = f~ X [0, t] and C is a constant which depends on the region O and the 
surface S; definitions II r~+~ ([ ~)t and I[ q II (~/ are given in [6]. From (2 .3)  and (2 .5)  
follows 

W~+x ~< C [[I q ](S~ -4- aU~W~] (2.6) 

Consequently for k ~ 0 the functions U~+x (t) and W~:+~ (t) satisfy the inequalities 
t 

0 0 

Wtt+~ (t) ~ Do (t) + 3CUb(t) W~(t), Wo (t) ...< Do(t) 
w h ~  

Let us set  

K l ( t ~ ) " = O l G ~ 2  I t l (t - ~)~ + : '  (t-,) 

[ 1  .4. eCO (t-.t) 1 K~ (t -- It) =, C, (t -- .t) ~ 

t 

Eo(t)~,!KiCt--'f)<r(T)>d~', Do(t) = C i q  (1) St 
0 t 

0 
and denote by to the least interval of  t ime for which the miequalities 

t t t 

. K~ (~) '-- 

o o 
t 
P ~ ,  t l  2CDo (t) \ K1 (m) d~ / < ~ C, 6CDt (t) < i (2.8) 

hold. o 
Using the method of mathemat ica l  induction we can show that for any k ~ 0. the fol-  

lowing inequalities hold for t ~ [0, to]: 
Utt (t) ~ Dt (t), W~(t) < 2D0 (t) (2.9) 

Consequently T~, Vk and 0 T~/Oz t are functiom which are uniformly bounded for t 
[0, to] (/---- t ,  2, 3). 

We shah show that the sequences V~, Tk and 0T~/Oz/ (j = t,  2,.3) conveage as 
k --, oo. Using (2 .1)  and (2 .2)  we obtain a system of eqautiom whtcl'i are satisfied by the 
functions VT~.~I - -  V n and Tn+x --Tn with the zero initial and boundary conditions. Let 

US S~t Pn+l  tm rlna,lt n~ax I I:'n+l, ~ V 
(i--t, ~. 3) (x. ' ) ~ t , "  " - -  n, i ] 
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_ m . x  
qn+l (X, O~=~t** ~z i 

Using the fact  that  T k and V k are bounded uniformly,  we obtain 

t t 

Pn+l<~n I ~I(T) dT-~, ~I~2 (T) dT 

0 0 

q.+1 ~ ~ + 2CDoP. 

X~ 

Let us denote  

Tb.en (2 .10)  reduces to 

ii [ t I A ,= ~ i~, (,) d~ I Kx (~,) dT 
' 0 

" 12CDo V, 

(i = 1 , 2 , 3 )  

(2.i0) 

X~+ I ~ AX. (2.11) 

Using [8] we obtain from (2.11) 

I Y,~+z I <1 AX~ I ~ hAD l Xnl < ),max I X= I (2.i2) 

Here ~ . .  is the largest  e igenva lue  of  the mazrix A and ] X~ [ = V p . z  -t- q W', By (2. 8) 
~'m=< t. From (2 .12)  we obtain 

P" ~ ~'max I X0 [, n n qn ~ ~'max [ Xe ] 

Since l i m n . . ~  ~'max = 0, we find that  l i ra  Pn - -  0 and lira q,~ = 0 u n --* o o .  
Consequent ly  the sequences V . ,  T .  and O T . / ~ z i  represent  the fundamenta l  sequen-  

ces of  the functions.  Therefore,  s ince V . ,  T .  and a T .  / Oz t are uniformly bounded 
functions, me foUowing limits exist when n --, oQ 

lira %'. -- V', lira T u ffi T', lira ST= = T/ 
0zj 

Using ['7, 9] it can be shown that V n and 2". represent the classical solution of the prob- 
lem (2. I), (2.2). 

Since V~, T~ and aTk / arm are continuous functions over the variables x, t up to 

the boundary of the region -~2to and converge uniformly to V',T' and T,.' when k -. oo, 
then V', T' and Tin' are continuous functions over the variables x and t up to the 

boundary of Oto and assume the initial and boundary values on S in a continuous 
manner .  

We shal l  show that  the functions V' and T' represent  a solution of  the problem (1 .3) ,  
(I. 4 ) .  Consider  the following system cf equations : 

0V _ ~AV = - -  ~ (V'Vs') - -  G~: (T - -  <T>) i - -  grad p (2.13) 
#t 

divV ==0, OT-- --AT=--__a (Vs,T,) 
dt  dzs 

with the initial and boundary conditions on S 

OT 1 = q (x,, t) Vii=o=0, Vtx s=0,  Tlt=.o=0, ~ x ,  
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Making use of the fact that V' and T' are bounded and applying the method employed 
in obtaining the estimates for V~. and Tk, we can show that 

[V~I<D~, I T I < 2 D 0 ,  ~ <2/9o (g==1,2,3) 

Subtracting (2. 13) from (2.1) we obtain a system of equations satisfied by the functions 
V,+ x - -  V and T,w,x - -  T. Obtaining for 

m a x  m a x  I V.+x,  i - -  Vi [, m a x  , T +x- T l, 
(t=.x.z.  s) (x. t )~sc~t ,  * (z.  t )GQt;  a z m  [ J  

(m = i ,2,3) 

the estimates analogous to those obtained for Pn+l and qn+l, making use of the facts 
that Vn, V'. 2". and T' are bounded and that lira V. ---- V' and lira Tn - - T "  as n - .  oo, 
and performing in the inequality analogous to (2.11) the passage to the limit as n --. oo, 

we arrive at lira max max [ Vi - -  V=+I, i [ = 0 
n- . .~  (i..-1.2. S) (x. tMi~f,* 

lira max l Tn+ x -- T .[ ,m 
.--~ ix. O~aro" ~zm lJ 

Consequently we find that as n --  oo , 

V' --  lim V.  =- V, T '  =. lira T,~ = T (Tj '  == ~ T  / 8z~) 

Therefore the functions V and T satisfy the system (1.3) and the initial and bo.m~dary 
conditions (1.4) on S in a continuous manner. This implies chat V and T represent 
the classical solution of the problem (1.3) .(1.4)  in fit., and the a p r i o r i  estimates 

IV, I<D,, , T I < 2 D o ,  l ~ l < 2 D o  (t==i, 2,3) 
i - - - / ,  | 

hold in 12t,. 
Since V, T and grad p satisfy the system (1.3) in o r ' ,  thengTad p is a function con- 

tinuous in x and t in ~t.'. Consequently the pressure p is also a function continuous 
in x and t in Or.'. Using the property of continuity of the functions p and grad p in 
-qt.' we can show that the pressure p is a continuous function in ~t.* 

Thus we have proved the theorem of existence of a clauical  solution of the problem 
(1.3), (1.4) local with respect to time, and shown an approximate method of obtaining 
fl'ds solution. The method consists of solving the system of linear equations (2,1) up to 
a certain value of k , and approximating the true solutions with the approximate ones. 

Let us now estimate the rare at which the approximate solution converges co the exact 
solut/on. To do this we subtract" from Eqs. (2. I)  the corresponding Eqs. ( I .  3) and denote 

m a x  m a x  I V t - - V k ,  i I - - _ E k ,  .k=IEk I 
( /~1.  $. s) (x. t)~Ec~to* F~ 

u ii 

(m i, 2, 3) (X, t)~2t,* 

Performing estimates analogous to (2. I0) we find, that q>~+x < Aq>k Solving this ine- 
quality as we solved (2.11), we obtain 

I ~  i<~ma= l ¢~I t ~ [ 0 ,  to] 

which yield the following estimate of the error: 
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[ ~ - -  V~, k] ~ 2  ~ ~nlax max {D1, 2Do} 
teD. t.] te[0. to] 

i f = i ,  2. 3) 
IT--T~I~2 max k~max max {D~, 2/)o) 

~e[o, t , ]  te[0. 'd 

N o t •. From Theo~m 1 and the formulas (2. 8) it follows that the method of come- 
cutive apl~oximations can be used not only for computing week umte~dy f~e convection 
(to ~- I, R = ~ -~ i), but also to compute a develol~d unsteady free convection 
(t0 "~ I, R ~. I). Thus the domains of applic~tbillty of the method of suece~ive apl~o- 
ximation and the method of small parameter (R is a small p~ameter) coincide, although 
the forrne: is simpler for computations. 

$o Theorem 2. The classical solution of the i~oblem (1.3),(1.4) is tmique. 
Proof. Assume that two solutions (V, T, p) and (V',T',p') exist. We denote W = 

V -- V', x = 3" -- T' and P -- p -- p'. Then, using (I. 3). (1.4) we obtain tlm follow- 
ing system of  equations for W, x and P : 

(V~W + V'W~) - -  grad P - -  Ga~i ,  (3.i) Ot @x k 

div W -- 0 (3.2) 

- A~r - -  - -  ~ (V~: + r W ~ )  (3.3) Ot Ox~ 
with homogeneous initial and boundlm/ conditions. Multiplying (3.1) by W and (3.3) 
by x and integrating the resulting eXlXeUiom over o w~ find. with the help of (3.2) 
and the boundary conditions,the following respective exl~iom 

3 

,, ÷ , ,  I  o- o'o I 
3 

Estimating the integrals appearing in the right-hand side.s of (3.4) and (3. 5), using the 
fact that V' and T are bounded and the Caucby-Buniakowski inequalities for the sums 
and,inmgtals, and substituting the estimates obtained into (3.4) and (3. 5), respectively. 
we obtain 

3 

f~ f~ ~ n 
3 

d Sh~l OT)"d~'~, ~ SW'd~'~ ( g > 0 . . 1 > 0 )  (~.7) 

Here C is a comtant depending on Dr, G and ~. while C~ is a constant depending on 
Do, ~2 and ~i Taking ~ 2a/C and ~] ~ 2 / Cx we obtain from (3.6) and (3. 7) the 
following inequalities : 

d i W*'cl.O-'~(Cme -~G~2) f W~'d~+G~' !'¢'d~ , d S~d~< Cx SW"-d~2 
~-'-f "d'? 77 
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which combined together yield 
dy/d t  -~ ky 

y (t) = I (W2 + x~) d~, k = ~ e  + el CA ÷ U~ (.~.S) 
a 

Solving (3. 8) under the condition that y (0) = 0, we find that y (t) ~ y (0) e -kt = 0 
Consequently y (t) ~ 0 for any t > 0, which means that V = ~ ' ,  T = T' and p = 

p' ~ coast. 
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