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Substantiation is given for the use of the method of consecutive approximations
to determine the velocity of the temperature distributions when unsteady free
convection takes place in a closed convex region, at the surface of which the
thermal flux density is specified, The domains of applicability of this method
and the method of small parameter, coincide, The convergence of the approxi-
mate solutjon to the exact solution is proved and an estimate of the error is
given, The local existence theorem and the uniqueness theorem are proved,

1, Leta convex region Q be completely filled with an incompressible viscous fluid
of constant initial temperature b,. Let for t; > U a heat flux distribution g1 (xi,, #1) be
specified at the surface & of the vessel, We derive equations describing unsteady free
convection in a bounded region with the boundary conditions of the second kind,

In the Bussinesq [1] approximation the equation of state assumes the form

p(b)=p (k&) {1 — B (Kb (b — <] (1.1)

where p is the density, B the thermal expansion coefficient, b the temperature and
<b> the volume=-averaged temperature of the fluid, It was shown experimentally in [2]

that [<bY — by | <€ | b — <by|
and from the formula for B(b) in the Bussinesq approximation it follows that P (<&) =
BB 1o (cby) — p (50) ] = p (0B (Ba) | <b> — B ] <€ B (<BY) p (Bu) |5 — <b> | <€ (B)

where 5 denotes the average temperature of the fluid, Consequently p (<)) = p (b)) =
Po and the equation of state assumes the form

p (B) = poli— Bo (b — <5)] (Bo = B (b)) (1.2)
Transforming the continuity and heat transfer equations of Navier~Stokes in the usual
manner employed in deriving the equations of steady free convection {1] and reducing

them to the dimensionless form, we obtain the following system of equations as well as
the initial and boundary conditions on §:.

%4- (V-grad) V = — grad p — Go* (T —<T) i + AV

divV=0, 9T/dt 4- (V-grad T) = AT (1.3)
aT
Vieo=0  Vig =0 Tlay=0 Gl =0, (t.4)

Here
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X aoh (Py— Py I2 Vi
=T t=ETEe PETTEE . V=
(b —bn) do (<b> — bo) Ao Qt
T=—0r" I =——rr—— =g [
s=— G ____anqol‘ q L ma;
= = T = , go = X q
hovo %o @ nes,

XeEQ, X, ES, S,=48 % [0,1], Q=§qu

where ! is the characteristic linear dimension, Q, is the dimensionless volume, V is
the velocity, P, and P, are the pressure and hydrostatic pressure, A, is the thermal
conductivity, ao is the thermal diffusivity and v, is the kinematic viscosity, The above
notation relates to the fluid under investigation,

The validity of Eqs, (1. 3) is indirectly confirmed by the good agreement of the approx-
imate solution of the initial boundary value problem (1, 3),(1.4) with the experimental
data obtained for a number of vessels in [3 - 5],

We shall call the functions V, p and 7 the classical solution of the problem (1. 3),
(1.4) provided that these functions as well as the derivatives of I'with respect to the spati-
al coordinates are continuous over the set of variables x and : in Q Y= Q%X |0, t] .
have derivatives with respect to the set of variables x and ¢ in Q - = Q' X |V, tl,
which are all continuous, appear in the system of equations (1, 3) and satisfy the condi-
tions (1.4) where Q' — Q and Q* is the closure of region Q.

2, Theorem 1., If R isa convexregion, S is a twice continuously different-
iable surface, ¢ (x,, t) C Hb" (S ;) [6] and g (x, 0) = 0, then a classical solution of the
problem (1. 3), (1. 4) exists in Q, and can be obtained by the method of successive appro-~
ximations, where 5§, = § x [0, t},].

Proof, Consider the sequences of functions Vi, Tk and py satisfying the following
systems of equations :

aT
oV Vo=0, po=0, —670--AT0
——dt"‘ —3AV = —grad p, — (V,_,-grad) Vi =G (T, — ()i, divV =0 2.1)

aT,
at
with the initial and boundary conditions
oT,
Th‘ |l-=0 =U, an

a
= AT, — a_z] V5, k-1T k1) (k>1)

<, = 9 (xg, 2, Viltmo=0, V. lx, =0, (k=0 2.2)

Let us obtain the estimates for the functions v, and 7. We denote

Ug(t) = max max o
(i=i, 2, 3) xan'l Vil 2.3)
T or or )
K K K
wew = mex {| 5= || T2 || S|, )

Using the results of [7] we estimate the functions Uy (t)
t t

L S CiGs2 S Wy (1) [_’._ s eC«*"’)] dv + c,Gc-S <T () [
0

1 C,(z-r)]
p - 17)9 —_— + e dr +

t—7
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Here § is an arbiwrarily small positive number, Co, C; and C, are constants depending
only on the region Q.
Using the a priori estimate given in [6], we estimate Ty,

Tase[no 3 m |

Here Q= Q X [0,¢] and C isa constant which depends on the region Q and the
surface S§; definitions || Tiy, || & (2, and || q|| “t’ are given in [6]. From (2.3) and (2, 5)

follows
WM <Cligl) +30, W, 2.6)

Consequently for & 3> 0 the functions Uy, (f) and Wy, (¢) satisfy the inequalities

g ] 2.5)

t ¢
v <{Re—omima+{Re-—oremarBn, n=0 @)
[ 0

Wi (8) < Do (t) + 3CUx(t) Wi(t), W, (1) < Do(t)

where

Ki(t —7) = Ci1Ga? [ + £Ce (=7

t—xP
Kyt—%)=0C, {__1 + £Co (t=7)
t—7)"
t
Eo(t) = le (=T @dr, Do) =Clg i

Let us set 0

¢
Dl(t)swo(t —v-4SK1 t—f)Do(T)dT

and denote by ¢, the least interval of time for which the unequalities
t 4

Ka(t—7) D (V) dv < _.;:.D, @), g K. (1) dT - 8C [(P - 61(7 K (v) d1> '

[ Rl TN

o

t
2CD, (t)S K (1) d‘:] <__c 6CD, (8) < 1 2.8)

hoid, °
Using the method of mathematical induction we can show that for any k >» 0.the fol-
lowing inequalities hold for ¢ & [0, t,]:
Ux (1) < Dy (1), Wi(t) < 2D, (1) (2.9)

Comsequently Tx, Vi and 7Ty/ dz; are functions which are uniformly bounded for ¢t &
[0, t] G =1, 2, 3).

We shall show that the sequences Vi, Ty and 4T/ dz; (j = 1, 2,.3) converge as
k — oo. Using (2.1) and (2.2) we obtain a system of eqautions which are satisfied by the
funetions V,,, — V,_ and T,+1 —T, with the zero initial and boundary conditions, Let
us set P

ni1 ™= IDAX max |V R (4

(=L2,3) (& D= "ThP™ il
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0Ty, —Tn)

6.zi

9ns1 = . glea;t . {| Tn+1 —Tal,
.

} (i=1,2,3

Using the fact that Ty and V, are bounded uniformly, we obtain
t t
P <€nS X (v)dr + :}T’C’LSKQ ) dv

0 0
Tnsy S ?é.‘ 4+ 2CDoPy (2.10)
Let us denote
P, 1 t
3.1_. Q K (t)dr S Ki(v)dy
Xn = v A 0 °
In 2CDy Ys !

Then (2.10) reduces to
Xpi SAXn (2.11)

Using [8] we obtain from (2,11)
X | STAXR IS TAD Xn | < Aax | Xn | (2.12)

Here ip,. is the largest eigenvalue of the mamwix A and [ X, [= ¥V Pp®+ gn*. By (2.8)
Amax< 1. From (2,12) we obtain
[Xn | SAqpx [ Xo |

Pngx?naxlelv 9n<”x}mx|xo|

Since lim,_, Apn .. =0, we find that lim P, =0and img, =0 as n~ oo,
Consequently the sequences V,, T, and 97Tn/8zj represent the fundamental sequen-
ces of the functions, Therefore,since V,,, 'y and 67Ty / 0z; are uniformly bounded

functions, the following limits exist when n — oo
lim Vo= V', limTp=1" lim &2 = 75
}
Using [7, 9] it can be shown that V,, and 7, represent the classical solution of the prob-
lem (2.1),(2.2).

Since Vi, Ty and 0T/ dzm are continuous functions over the variables x, ¢ up to
the boundary of the region &, and converge uniformly to V'.7" and 7w’ when k - oo,
then V', 7' and Tp' are continuous functions over the variables x and ¢ up to the
boundary of Q, and assume the initial and boundary values on § in a continuous
marnner,

We shall show that the functions V' and 7’ represent a solution of the problem (1, 3),
(1.4). Consider the following system cf equations:

NV _ AV e— 2 (V) =G5 (T — Ty i—grad p 2.13)
at 0z,
divv =0T AT =— 2 ;1)
ot 0zs

with the initial and boundary conditions on §

, oT
V|l___0=0' V}xs=0, T‘:-o""'o‘ 5_”_,=q(x,,t)
s
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Making use of the fact that V' and 7' are bounded and applying the method employed
in obtaining the estimates for Vi and Tk, we can show that

|Vil <Dy, |T|< 2D, ‘;_’z'-\<zvo (im=1,2,3)
i

Subtracting (2, 13) from (2.1) we obtain a system of equatjons satisfied by the functions
Vasy —V and 7., — T. Obtaining for

. max  max - AT,y —1
vV Vij, max T o Ml
(=1, 2.3) (x, ”E"h‘l TV ehye {I =T I

(m=1,2,3)

the estimates analogous to those obtained for 2P,,, and g¢,,,, making use of the facts
that V,,, V', Tn and 7’ are bounded and that lim V, = V' and lim Ty, =7 asn — oo,
and performing in the inequality analogous to (2.11) the passage to the limit as n — oo,

we arrive at lim max max |[V;—V 0

fmsco (iml, 2.8) (X l)EQ( . n+l, 1 l =

o
lim mex {7, — Tl‘ ("ﬂ T)l}-o
n-—-w (X, ')enl

Consequently we find that as n - o ,
VamlimDVy,=V, 7=limTa=T Ty =0T | dzy)

Therefore the functions V and T satisfy the system (1.3) and the initial and boundary
conditions (1.4) on 5 in a continuous manner, This implies that V and T represent
the classical solution of the problem (1.3),(1.4) in Q,, and the a priori estimates

V<D 171<2D0, |[Fh) <200 =1, 2,9
hold in Q, . '

Since V, T and grad p satisfy the system (1,3) in Q,/, thengrad pis a function con=~
tinuous in x and ¢ in Q,“'. Consequently the pressure p is also a function continuous
in x and ¢ in Q, ‘. Using the property of continuity of the functions p and grad p in
Q' we can show that the pressure p is a continuous function in Q, *

Thus we have proved the theorem of existence of a classical solution of the problem
(1. 3),(1.4) local with respect to time, and shown an approximate method of obtaining
this solution, The method consists of solving the system of linear equations (2,1) up to
a certain value of % , and approximating the true solutions with the approximate ones,

Let us now estimate the rate at which the approximate solution converges to the exact
solution, To do this we subtract from Egs, (2.1) the corresponding Egs, (1. 3) and denote

max max |Vi— Vi ¢|= = | &x
—_rr (x.z)en,;, 1= Vit = Ey, @ ﬂ ﬂ

max (!T-T a___._(T—'T’f)}= -
(x.t)en,.-l "I’I OZm Fy (m={g,2,3)

Performing estimates analogous to (2.10) we find, that @, 1 S ADy. Solving this ine~
quality as we solved (2,11), we obtain

| Ok IS AL [ Pol,  tE][0, ]

which yield the following estimate of the error:
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V;— 2 max Af Dy, 2
[Vs klgte{o ) max‘En[mx {D1, 2D0}
=1, 2,3
T—-T 2 max Ak Dy,
| Kl < Dax | Mmax téﬁx {D1, 2Do}

Note, From Theorem 1 and the formulas (2, 8) it follows that the method of conse-
cutive approximations can be used not only for computing week unsteady free convection
(to > 1, R = Go <€ 1), but also to compute a developed unsteady free convection
(o << 1, R > 1). Thus the domains of applicability of the method of successive appro-
ximation and the method of small parameter (R is a small parameter) coincide, atthough
the former is simpler for computations.

8., Theorem 2. The classical solution of the problem (1, 3), (1.4) is unique.

Proof, Assume that two solutions (V, 7, p) and (V’,7’,p’) exist, We denote W =
V-V, v=T7—Tand P=p —p’. Then, using (1. 3), (1.4) we obtain the follow-
ing system of equations for W, < and P

OW AW = — __ — (VW 4 V'Wy) — grad P — Ganai, (3.4)
div W =0 (3.2)
‘;’t A-c..-.._(v T+ TWY) (3.3)

with homogeneous initial and boundary conditions. Multiplying (3.1) by W and (3, 3)
by © and integrating the resulting expressions over Q@ we find, with the help of (3.2)
and the boundary conditions, the following respective expressions

3
_g_t ngda +20 %2 (g_?)zm=z S VW W, dQ — 201G Qr(w, do (3.4)
g gom N5 g g

3
d , ot \?
= SWQ +2 S S (a?,.) dQ = SkaTWde (3.5)
o] 0 ke=1 Q
Estimating the integrals appearing in the right~hand sides of (3.4) and (3. 5), using the
fact that V’ and T are bounded and the Cauchy-Buniakowski inequalities for the sums
and. integrals, and substituting the estimates obtained into (3. 4) and (3, 5), respectively,
we obtain
d ¢ o (oW
& { weae - @s—ce) S S (a ) aQ <__ KW-dQ-q- Ce S(r?-;- w)dQ (3.6)
o]

X
Q =1 ¢ o a

< Srwsz-}-(z-elcx)g ( C)ae< L (wae @>00>0 @39
d 0k o

Here ¢ is a constant depending on D,;, Q and ¢, while C, is a constant depending on
Dy, Q and ¢,. Taking =< 20/C and & < 2/ C1 we obtain from (3.86) and (3. 7) the
following inequalities:

2 § W20 < <_'_ G Q W2dQ + Ga? § waQ, % Smg <& Swzdsz
at dt 8
Q

[l
Q / st
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which combined together yield
dy/dt < ky

y(t)=g(w2+r=)d9, k=2

g

Solving (3. 8) under the condition that ¥ (0) = 0, we find that y (&) < ¥ (0) M =9,
Consequently y (t) = 0 for any ¢ > 0, which means that V=V', 7 = T'and p =
p’ 4+ const.

+ :311 4 Ga? (3.8)
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